Learn how to setup Windsurf IDE to work with Tomba API using AI-powered development features.
Quick Use
Using Windsurf Chat
In Windsurf's AI chat interface, reference our documentation:
Code
@web https://docs.tomba.io/llms.txtCreate a comprehensive email validation service using Tomba API with TypeScript, including rate limiting and caching
Flow Mode
Use Windsurf's Flow mode for complex integrations:
Code
Flow: Build Tomba Email Service1. Fetch docs from https://docs.tomba.io/llms.txt2. Create TypeScript interfaces for all API responses3. Build service class with authentication4. Add error handling and retry logic5. Create unit tests6. Add integration examples
{ "contextFiles": [".windsurf/tomba-api.md"], "aiInstructions": "When generating API code, use Tomba API patterns from the documentation. Always include proper authentication headers (X-Tomba-Key, X-Tomba-Secret) and implement rate limiting.", "codeGeneration": { "preferredLanguages": ["typescript", "python", "rust"], "includeTests": true, "includeDocumentation": true }}
Method 2: Workspace Instructions
Create .windsurf/instructions.md:
Code
# Tomba API Development Instructions## AuthenticationAlways use these headers:- X-Tomba-Key: API key- X-Tomba-Secret: Secret key## Base URLhttps://api.tomba.io/v1## Rate Limiting- Implement exponential backoff- Respect 429 responses- Cache responses when appropriate## Error Handling- Handle network errors- Parse API error responses- Provide meaningful error messages
Windsurf-Specific Features
1. Multi-Agent Collaboration
Use multiple AI agents for complex tasks:
Code
Agent 1: API Client Development- Build TypeScript client for Tomba API- Include all endpoints from documentation- Add comprehensive type definitionsAgent 2: Testing & Validation- Create unit tests for all methods- Add integration tests- Test error scenariosAgent 3: Documentation- Generate API usage examples- Create README documentation- Add code comments
{ "version": "1.0", "ai": { "model": "claude-3.5-sonnet", "temperature": 0.1, "contextWindow": 200000, "customInstructions": "Focus on production-ready code with comprehensive error handling. Use TypeScript for type safety. Follow REST API best practices." }, "codeGeneration": { "autoFormat": true, "addImports": true, "generateTests": true, "includeDocstrings": true }, "development": { "autoSave": true, "liveReload": true, "typeChecking": true }}
Example Implementations
1. Complete TypeScript Client
Prompt:
Code
Using the Tomba API documentation, create a complete TypeScript client with:1. Full type definitions for all API responses2. Service classes for each endpoint category3. Request/response interceptors4. Automatic retry with exponential backoff5. Comprehensive error handling6. Built-in caching7. Rate limiting8. Request logging9. Unit tests for all methods10. Integration examples
2. React Integration
Prompt:
Code
Create a React integration for Tomba API that includes:1. Custom hooks for email operations2. Context provider for API configuration3. Components for email finder and verifier4. Loading states and error handling5. Form validation integration6. Caching with React Query7. TypeScript throughout8. Storybook stories9. Jest tests
3. Node.js Microservice
Prompt:
Code
Build a Node.js microservice using Tomba API with:1. Express.js REST API2. Input validation with Joi3. Rate limiting middleware4. Redis caching5. Bull queue for background jobs6. Comprehensive logging7. Health checks8. Prometheus metrics9. Docker configuration10. API documentation with Swagger
Best Practices for Windsurf
1. Use Contextual Development
Provide rich context in your prompts:
Code
Context: E-commerce platform user registrationGoal: Prevent fake email registrationsConstraints: Must handle 10k+ registrations/dayRequirements: Real-time validation, fallback strategies, audit loggingUsing Tomba API, implement email verification in the user registration flow